Calculation of turning rigidity of I-section reinforced concrete
elements with normal cracks

T N Azizov!'?, O M Orlova® and O V Nahaichuk®

! Department of technical and technological disciplines, labor protection and life safety Faculty
of engineering and vocational education, Pavlo Tychyna Uman State Pedagogical University,
Sadova Street 2, 20300 Uman, Ukraine

2 Email: taljat999@gmail.com

Abstract. The article provides a methodology for calculating the torsion of an I-beam element
using its approximation in the form of a cross-rod system. The cross-sectional I-section is
divided into a finite number of longitudinal rods of rectangular section. These rods focus on
their axial, flexural and torsional stiffness. Longitudinal rods are connected by transverse
vertical and horizontal rods. The transverse rods imitate the local deformation of the
longitudinal rods at their contact with each other. In contrast to the previously proposed
methodology, in order to reduce the number of unknowns for creating the basic scheme of a
statically indeterminate system, it is proposed that not all transverse rods be cut, but only one
step in the longitudinal direction. The forces in the longitudinal rods determined from this
calculation are applied to the rods of the next step. The pitch of the transverse rods may be
arbitrary. A method for determining the stiffness parameters of the rods of an approximating
system is shown. The advantages of the proposed methodology are shown, which can
significantly reduce the number of equations unknown in the system, calculate elements for
bending with torsion, and also take into account the change in stiffness as a result of nonlinear
work of materials and crack formation.

1. Problem statement and research analysis.

A significant effect of cracks on the stiffness of reinforced concrete core elements during torsion was
shown in [1,2,5,6,7]. And torsional rigidity, in turn, affects the redistribution of forces in complex
systems [8,9,11]. Most torsion studies do not consider elements with normal cracks [1,2,5,6,7,12,13].
The problem of determining the torsional stiffness of reinforced concrete elements with normal cracks
is guite complex. This is due to the fact that the use of formulas of the theory of elasticity is not
possible due to the fact that shear stresses are not distributed over the entire cross section of the rod
[8,9].

Approximate methods for calculating the strains of such elements under torsion were proposed
in [3,8]. In these works, it was shown that the main task in this case is to determine the mutual
displacement of the blocks of the reinforced concrete element separated by a normal crack.
However, these works are notable for their approximation, especially in the case of a non-
rectangular section of a rod subject to torsion.

In [3], a method was proposed for calculating reinforced concrete elements with normal cracks
using a rod approximation. The disadvantage of this technique is the large number of unknowns in
solving the problem. In addition, the scheme for determining the stiffness parameters of a rod



approximating system is not described there. In this work, it is shown that such an approximation is
also possible for calculating I-beam elements, however, only the principles of calculating I-beam
elements are given.

The purpose of this article is to develop the method of rod approximation for calculating the
stiffness of reinforced concrete 1-beams with normal cracks.

2. Statement of the main material.

For the calculation, we will use the rod approximation of a solid body based on the technique
described in [3]. On a block length I of an I-beam reinforced concrete element separated by normal
cracks, mutually opposite torques act on two ends. Therefore, we can consider the block diagram with
the length lcc/2, sealed with one (distant) end (Figure 1).
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Figure 1. Scheme of an I-section element approximation by a cross-rod system.

According to the methodology [3], we divide the cross section into a finite number of rectangles.
At the same time, each element of the I-beam (upper shelf, rib and lower shelf) can be divided into
rectangles with arbitrary sizes.

We assume that all rectangular rods into which the I-section is conventionally divided are
interconnected in the middle of horizontal and vertical faces. Thus, instead of a solid block of an
I-beam cross-section, we get a system of longitudinal and transverse (vertical and horizontal) rods
(Figure 2 and 3).

The number and sizes of longitudinal rods (pos. 1, 2 and 3 in Figure 1-3) are chosen arbitrarily at
the discretion of the calculator. The axial, bending, and torsional stiffnesses of the rods are
concentrated in the longitudinal rods of this system, into which the shelves and the rib of the I-section
are divided. Transverse horizontal (pos. 4 in Figure 2, pos. 6 in Figure 3, b) and vertical (pos. 5 in
Figure 3) rods simulate local deformation of longitudinal rods in the places of horizontal and vertical
nodes of the longitudinal rods connection.

To significantly reduce the number of unknowns, it is proposed to dissect the transverse
rods in only one section in turn. First, the first block of the cross-rod system with a length |
equal to one step of the transverse rods is considered. (Figure 4). Thus, the end section with the
applied external load M:. is initially considered. The longitudinal rods of the cross-rod system
are considered conditionally rigidly embedded in the plane where the next row of transverse
rods is located (at a distance | from the end).
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Figure 2. Representation of the upper shelf in the form of longitudinal and transverse rods.

Figure 3. Representation of the ribs (a) and the lower flange (b)
in the form of longitudinal and transverse rods.

Figure 4. The core scheme for calculating the first stage



The determination of forces in longitudinal rods is carried out by conditionally dissecting the
transverse rods and examining the conditions for the compatibility of deformations at the dissection
sites (this technique will be described below).

The efforts in the longitudinal rods of the first block, determined from the solution of the
first stage of the problem, are applied to the ends of the longitudinal rods of the second block
(at a distance | from the end), which in turn are considered conditionally fixed at the level of the
beginning of the third block (at a distance of 2l from the end). Again, the forces in the
longitudinal rods are determined, which are applied to the rods of the next block, etc. This
calculation is repeated until the middle of the length of the calculated block between the cracks,
i.e. up to lec/2 as many times as the steps | in the longitudinal direction are selected in the
design scheme.

To determine the displacements in the level of the i-th block along the length, add all the
displacements of the blocks from the first (from the middle of the parallelepiped under consideration)
to the i-1th plus the displacements of the i-th block itself.

Such a calculation scheme allows us to solve a problem with the number of unknowns n times
smaller than the solution by considering the entire core system presented in [3] (where n is the number
of calculation blocks along the length of the element). In this case, however, the system of equations is
solved n times, but, as you know, solving a system with mxn unknowns is more complicated than
solving a system with m unknown n times. In addition, with such a phased solution, it is possible to
easily solve the problem with modified stiffnesses of the longitudinal rods as a result of nonlinear
work of materials and crack formation.

We now proceed to determine the forces in the rods of one block under consideration (see
Figure 4). To create the basic scheme of calculation by the force method, we cut all the transverse
(horizontal and vertical) rods in the middle (i.e., at the places of conditionally touching the middle
of the faces of the longitudinal rods). In the general case, six unknown internal forces will act at
the dissection site: concentrated forces in the direction of the three coordinate axes and moments
relative to the three coordinate axes. In many cases, it is sufficient to take into account only
unknown concentrated internal forces in the direction of the three coordinate axes. Then the
statically indefinable system will turn into a statically determinate system of longitudinal rods, to
which external forces are applied, and in the places of transverse rod dissection, internal unknown
forces. In figure 5 shows internal unknown forces in section j of two adjacent longitudinal rods
with numbers i and i + 1. Moreover, in figure 5, it is assumed that the height of the cross section of
the longitudinal rod is ¢, and its width is a. To the left of the j-th section is the i-th longitudinal rod,
to the right - i + 1-th. To determine the unknowns, it is necessary to draw up equations of
compatibility of movements in the direction of the three coordinate axes in the considered section.
Those the displacements to the left (in Figure 5) of the j-th section in the longitudinal rod with
number i and the transverse horizontal rod to the right of the i-th longitudinal rod should be equal
to the displacements to the right of this section in the i + 1-th longitudinal rod and horizontal
transverse rod of this item. Similarly, the condition of compatibility of deformations in a vertical
section between two longitudinally adjacent longitudinal rods is considered.

Longitudinal rods, as mentioned above, have axial, bending, and torsional stiffnesses equal to the
corresponding stiffnesses of rods of rectangular section into which the calculated double tee section is
conventionally divided (see Figure 1).

Let us now consider the methodology for determining the stiffness of transverse rods imitating
local longitudinal strains. Since the initial diagram assumes that all longitudinal rods are connected
at points in the middle of the vertical and horizontal faces, local deformations from the acting
internal forces will occur at the junction. A separate longitudinal rod, with forces acting along its
right vertical face (in section j), is shown in figure 6, a. In figure6b shows an equivalent circuit with
a longitudinal rod and transverse rods.
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%
_ ]
T
/ H, X
s,
_________ - in
a a/2 a’2

Figure 6. Scheme for determining the stiffness of the transverse rods of the calculation system

Bending and axial stiffnesses of the transverse bar on the right in figure 6b should be selected so
that the real local deformation from the forces T;,S; and H;in the rod in figure 6a was equal to the
strain of the transverse simulating rod in Figure 6, b. Given the principle of independence of the
action of forces, we can consider the deformation from each of these forces separately. For this, the
approach adopted in [3] is recommended. According to this approach, a rectangular box (see Figure
6, a) should be modeled in some software package (for example, Ansys, Lira, etc.) using volumetric
finite elements. Apply a unit force to such a model (separately for each case T;,Sjand H;) and make a
series of calculations with different values of the sides of a rectangular section and different
positions of forces along the length of the box. Moreover, given that when a concentrated force is
applied at a point, deformations can grow unlimitedly with a decrease in the size of the finite
elements, it is proposed to apply a load distributed over a certain area, the sum of which is equal to
the required force H.

In figure 7 shows an example circuit for the action of horizontal forces. Variants of the application
of forces along the parallelepiped are denoted byHi,Hz, ...Hn. In addition, the sizes a and c of the cross
section vary.
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Figure 7. Scheme for determining local deformations for the case of horizontal forces

As a result of a series of calculations, a function of the form will be obtained:

A= f(acyn) (1)

where y;, is the distance from the end face of the box to the point of application of force along the Y
axis (see Figure 7).

Once done, such a series of calculations can be further used to determine the deformations of an
element of any cross section. It is easy to obtain a function similar to (1) for the action of forces Sand
T, shown in Figure 6.

Having A values for a given force, it is easy to determine the axial stiffness EA of the rod in Figure
6 b from the condition:
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Similarly, from the condition that the local deformation along the Y axis is equal to the action of the
force T (obtained according to the scheme described above using volumetric finite element modeling)
displacement of the transverse rod (see Figure 6 b) from the same force, we obtain the bending
stiffness of this rod in the direction of the axis Y.

Composing for each j-th section the conditions for the compatibility of deformations to the left and
right of this section (see Figure 5) and similarly above and below the section, we obtain a system of
equations for determining all the internal unknown forces T;,S; and H;. Given that three unknown
internal forces act in each section, the system of equations will consist of 3-nequations with
3-nunknowns, where n is the number of sections.

In each i-th longitudinal rod, in the general case, there are four sections (see Figure 5): iyabove the
rod,in in the bottom, i; on the left, and ir on the right. In figureb, section j is the section i, for the ith rod
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and the section i+1, for the i+1ith rod. After determining all internal unknown forces, each
longitudinal rod is calculated as a statically determinable rod, which is subjected to an external load
and internal forces determined from the solution of this problem.

The following should be noted as advantages of the proposed method.

1. Having once obtained data (dependencies of type 1) based on numerical calculations of the
circuit according to Figure 7, we can determine the torsion displacement of any element. In this case,
the stiffness of the transverse rods of the cross-rod system (see Figure 2, 3, 6) is selected depending on
the depth along the length of the element from its end, which is easy to do in a fairly simple
calculation program.

2. As mentioned above, with a phased "advance" from the end of the element into its depth by
considering one step | of the transverse rods, the system of equations is much smaller.

3. The proposed method of rod approximation allows you to calculate the rods of any cross section.

4. The proposed method easily solves the problem of calculating not only torsion, but also bending
with torsion. To do this, not only Mt;torques are applied at the end of the element (see Figure 5, 6), but
also bending moments, as well as longitudinal forces.

5. The calculation method allows you to use any dependencies of the deformation diagram of
materials, because in nonlinear calculation in each longitudinal or transverse rod, its rigidity
parameters can be separately changed by any known methods for calculating reinforced concrete rod
elements.

6. The technique makes it possible to rely on torsion for elements with torques distributed at their
end, distributed in any way, including under the action of a moment on part of the cross section, which
is practically not possible using classical methods of elasticity theory [10], in which it is assumed that
shear stresses are evenly distributed over the end section.

7. The calculation procedure is simple enough to clarify by taking into account the moments
relative to the coordinate axes. Moreover, in each section, six component forces should be taken into
account (besides the forces considered here along the axes, there are also moments relative to the
coordinate axes).

3. CpaBHeHHE € IKCMIEPUMEHTAIbHBIMH JAHHBIMH.

[IpumeHenne MpeIoKEHHON METOMUKN TMOKaXEeM Ha MpPUMEpe CPaBHEHHUS C IKCIEPUMEHTAITHLHBIMU
TaHHBIMH [9], TAe OBIIM WCHBITAHBI JKEJIC300€TOHHBIC OAJKH TIPSIMOYTOJIBHOTO CCUCHHUS C
HOpPMaJIbHBIMU TPEIIMHAMU Pa3HOM BBICOTHI. [lepemernienue Ace B C€UEHUU ¢ HOPMAJIbHOW TPEIMHON
onpenensiercs mo meroauke [4]. [Ipu 3ToM B3auMHOE CMEIeHHE OeperoB HOPMaITLHON TperuHB AM,
BXoJAIIEee B (DOPMYITy OnpenesieHust Acre, ONPENEISITIOCH 10 METOINKE, OIMCAHHON BBIIIE B HACTOSIIEH
cTathe. B Tabmuite 1 mpuBeneHBI JaHHBIC CPABHEHHUS SKCIIEPUMEHTANBHBIX 3HAYCHUH A=AploctAcrc
(rme Apioc —TIepeMenieHne 4acTh Onoka 0e3 TpemmH) 1o [9] W TeopeTWdecKH ¢ TpHUMEHEHHEeM
BBITICTTPUBEIEHHON METOJIUKH TSI CEMH KelIe300€TOHHBIX 00pa3IoB. DKCIepUuMEHTAIbHbIC JaHHBIE B
[9] mosy4ensr st 6anok cedenuem bxh=120x200 mm, Moxysb aepopmanuii 6erona Ec=32097 Mna.
JHuametp apmatypbl Os M BBICOTA HOPMaIbHOW TpeHMHBl Nee BapeupyroTcs. TeopeTHdeckue u
AKCIIEPUMEHTAIbHBIE 3HAYEHUS IOJYYEHBI NMPU 3HAYCHHWH BHEIIHETo KpyTsmero momeHta M=300
N*m. [anspie Tabmuisl | TOBOpAT 00 YIOBIETBOPUTEIHHOM COBIAIACHUU AKCIHEPUMEHTATBHBIX
JAHHBIX C TEOPETUYECKHUMH, YTO TOBOPHUT O JIOCTOBEPHOCTH MPEUIOKEHHOW METOIUKHU pacyeTa.

Ta6n1/1ua 1. CpaBHGHI/IG OKCIICPUMCHTAJIbHBIX U TCOPETUYCCKUX JKAHHBIX

mapka | ds Rere A(mm-10?) Ateor | mapxka | ds Nere Ace (mm-10%) | Ateor
(mm) | (mm) | test teor Apost (mm) | (mm) | test teor Avost

B-2-1 |10 150 165 159 [0963 |B-4-1 |10 100 1.25 132 |1.056

B-2-2 |14 150 145 151 [1.041 |B-4-2 |14 100 1.15 121 ]1.052

B-3-1 |10 125 159 172 [1.081 |B-4-3 |18 100 1.1 1.18 |1.072

B-3-3 | 18 125 123 131 |1.065




4. Conclusions and research prospects.

To calculate the torsion of the I-beam cross-section, it is proposed to approximate it with a cross-rod
system. It is proposed to consider the sequential determination of unknowns in each row of transverse
rods in order to reduce the number of unknowns. The advantages of the technique are the possibility of
calculating an element of any cross section and taking into account the nonlinear properties of
materials, as well as the possibility of calculating both torsion and bending with torsion.

MGTOILI/IKa pacyeTa Mo3BOJIACT OMMPEACIIATL KECTKOCTh TP KPYUCHHUN )Keﬂe306eTOHHle D3JICMCHTOB
C HOPMAJIbHBIMKU  TpCIIMHAMU 663 MPUMCHCHUSA  CIIOKHBIX IIPOrpaMMHBLIX  KOMIIJICKCOB C
HUCIIOJIb30BAHUEM O6’I)CMHBIX KOHEYHBIX 3J1eMEHTOB. B PE3YIbTATC HUCIIOJIB30BaAHUA HpCI[J'IO)KCHHOﬁ
MCTOAMKHU ITOABJIAKOTCA HOBBIC BO3SMOKHOCTU ONPECACICHUA KPYTHHBHOﬁ JKECTKOCTU }I<6H63066TOHHBIX
JJIEMEHTOB, 4YTO B CBOIO OoUepe/ib IMO3BOJIACT 3HAUYUTECIHLHO 0ojiee TOYHO BBIYUCIISTH ycuis B
CJIOKHBIX CTaTUYCCKH HCONIPCACITIUMBIX CTCPIKHCBBIX )KCJ'IC306€TOHHBIX KOHCTPYKIUAX.

B mepcnektuBe mpemmonaraetcs pa3paboTKa METOAMYECKUX PEKOMEHAANN MO TPUMEHEHHUIO
MPEUIOKEHHON METOJMKH, a TaKkKe IMOJlydeHHe ammpoKCHMAMoHHbIX (opmyn tumna (1), KoTopble
MOTYyT 6BITB HCIIOJIb30BaHbI MMPOCKTUPOBIIMKAMU W WMHXKXCHEpaMU Ui pacucTa IMPOCTBIX U CIIOKHBIX
CeueHUH NpU KPYUEHNUH, TPUYEM KaK ¢ HAIMYMEM HOPMAJBHBIX TPEIINH, TaK U O€3 TPEIInH.
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