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Abstract 
 
Most of the reinforced concrete slab structures are statically indeterminate systems. In these systems the redistribution of internal forces 

depends on the nature redistribution of rigidities between their separate  elements. The presence of cracks significantly affects the change 
of elements rigidity of reinforced concrete structures. In the plate-ribbed systems, which include bridge structures, ribbed prefabricated 
and monolithic ceilings, at the moment when normal cracks are wide enough, spatial torsion cracks may be absent. This technique aimed 
at determination of the torsional rigidity of rectangular section elements with normal cracks widens the spectrum of researches on the 
strength and deformability of reinforced concrete elements. The goal of the present research is to improve the methodology for determin-
ing the movement of a reinforced concrete element of the rectangular cross-section with normal cracks. In this case, the end of the rod is 
loaded with a torque on the section part. 
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1. Introduction 

 
The category of plate-ribbed systems includes bridge structures, 
monolithic and prefabricated ribbed overlaps. The  normal cracks 
arise аt the edges of these structures cause of bending moments.It 
often happens that when a sufficiently wide disclosure normal of 

cracks, the spatial fracture from torsion are not available. At the 
same time, the load redistribution between contiguous ribs and 
between separate precast elements overlap depends not only on 
the bending, but also by torsional rigidity ribs [1]. 
Experimental research [2] shows that rigidity of  ribs prefabricated 
slabs on the torsion changes during crack formation. It should be 
noted that, don't pay heed to importance of bending rigidity and 
torsional rigidity in redistributing forces in statically uncertain 

systems, a very large number of theoretical and experimental work 
is devoted to the study of  bending rigidity. These works include 
works [3,4,5,6], and others. Investigation of torsional rigidity in-
volves a very limited number of papers [7]. 
Existing methods of determination of torsional rigidity [8, 9] con-
cern only the reinforced concrete elements with spatial (spiral) 
cracks. The torque is applied to the part of the end surface of the 
rectangular element [10].The main objective in determining the 
torsional rigidity is calculating the displacements in the end of the 

rectangular element. If you use the "two-rod" model [10] may 
suffer the accuracy of calculations. Therefore, the aim of this arti-
cle is improvement the methods of determination the displace-
ments of the reinforced concrete element of rectangular section 
with normal cracks. The end element is loaded with torque on the 
part of the section. 

 

2. Main part 

 
The analytical model is a reinforced concrete girder element of 
rectangular cross section. Element is divided into blocks with 
normal cracks, which arise from the action of bending moment.  
The torque is applied to the top part of the end surface of the gird-

er (zone compressed by bending). 
The results are used for numerical and analytical method of re-
search. We used differential equations and methods of differential 
and integral calculus.  
Consider a concrete element with normal cracks (fig. 1). 
 

 
Fig. 1: Scheme of reinforced concrete element with normal crack, 

which is loaded torque 
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 Transfer of torque from А block to block В (fig. 1) occurs through 
the compressed zone of concrete. To determine the rigidity of the 
reinforced concrete element with normal cracks under the action 
of torque is required to determine the displacement the block A 
relative to block B.( fig. eee) 
 

 
fig. eee Moves of block A relative to block B, separated by a normal 

crack 

 Application scheme of torque to the block B looks as shown in 
(fig. 2). 

 
Fig. 2: Scheme of torque transmission through the compressed zone of 

concrete 

  
Determination of the torsional rigidity of a reinforced concrete 
element with a normal (from bending) crack can be represented in 
the following sequence: 
1. To create a static definability, one should mentally dissect the 

longitudinal reinforcement in the fracture. 
2. Determine the movement of one block relative to the other. 
From the compatibility conditions of deformations in the cut-off 
reinforcement, determine the nudge force Q in it (Figure 0.2). 
Taking into account the nagel force Q and the external torque Mt, 
determine the real horizontal displacement in the fracture atot of 
one block relative to the other (Figure 0.2). 
3. Determine the angle of rotation of the fictitious conditionally 

continuous element φekv as the ratio of the previously determined 
displacement atot (point 4) to the turning radius, (approximately 
half the height of the rod section). 
4. Determine the torsional stiffness of the element with crack Bt 
according to the formula: 

ekv

t
t

lM
B




=  

To determine the mutual displacement of blocks, it is necessary to 
determine the stresses in the longitudinal sections of the element, 
to which a torque is applied to a section of the cross section of the 
element. Fig. 2:  

The task of the elasticity theory about torsion rod of rectangular 
cross section offers a solution based on these assumptions: 

- end of the rod is uniformly loaded by the tangential forces; 

- the resultant of these forces is the torque Mt; 
- according to the method of application torque on Fig. 2 (on a part 
of the section) stresses and displacements can not be defined by 
the formulas torsion. 
This task can be solved using the finite element method (FEM) 
using volumetric finite element (FE). There are difficulties in us-
ing these elements. Keep in mind that this problem is only part of 
the solution of the more general task of determining the torsional 

rigidity of reinforced concrete elements with cracks. 
To solve the problem we use the method [10]. The difference will 
be in the separation the rod into arbitrary number, instead of two. 
 
Consider a rod, cut by a horizontal plane into two linear finite 
elements ‒ two beams I and II (fig.4). The length of the rod in 
question L is the length of the block bounded by cracks. The cut-
ting plane passes on the boundary between the elements I and II. 

In this case, the height of the section of the upper rod is equal to 
the compressed (from the bend) zone, and the height of the ele-
ment II is the height of the crack. In Fig. 4 consoles are shown 
conditionally. In fact, the ends of elements I and II are in the same 
vertical plane ХOZ. 
 

 
Fig. 4: Scheme of dissection of a rod block into two rods. The block is 

bounded by cracks on both sides 

 
The forces S (x) act in the plane of dissection in the vertical plane 
(fig. 5) and tangents τ (x) – in the horizontal plane. The tangential 
forces are directed along the y-axis in Fig. 3а. It should be noted 

that tangential forces directed along the x -axis will act in the 
plane of dissection, but they will be neglected because of their 
smaller magnitude in the approximate method under consideration. 
 

 
 
Fig. 5: Efforts acting on the plane of dissection double-layer console rod. 

 
The block, separated by cracks, is represented in the form of a 
physical model (fig.4). It can be seen that the fibers of such a 
"model" under the action of torque, as shown in Fig. 4 are subject-
ed to compression-expansion deformations in the vertical and 

horizontal directions. Volumetric diagrams of linear vertical 
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(transverse) forces and shear forces acting in the horizontal plane 
of the rod dissection in Fig. 5 are shown in Fig. 6. 

 
 

Fig. 6: Diagrams of tangential shear and transverse forces acting in the 

plane of the dissection of the rod 

 
It should be noted that the dissection of a block of length l parallel 
planes in the XOY plane into the nth number of layers (rod finite 
elements) gives greater accuracy of the calculation results. The 
more number of elements of dissection will be accepted, the high-

er the accuracy of determining unknown forces and deformations. 
Loading scheme of the block B (fig. 1) and its division into sepa-
rate lanes is as shown in Fig. 3. 
We spend n horizontal sections which are parallel to the plane 
OXY (fig. 3) and get n + 1 lanes (rods). 

 
Fig. 7: The scheme of dividing the block into individual strips(rods) 

 
Considering the symmetrical loading block of Fig. 3, the scheme 
of loading the i- rod, bearing in mind the analogy with [10] can be 
represented as shown in Fig. 4. 
The origin of vertical efforts Si(x)  and the tangential τi(x) is 

explained in [10]. So additional explanations are not going to give. 
So here we are not going to give additional explanations. 

 
 

Fig. 8: Scheme of the internal forces applied to the  i-rod 

 
Unknown Si(x) and τi(x) is determined by the joint of  defor-

mations community in the i-section (similar to [10]). A typical 
strings of the system of equations to determine the unknown ef-
forts will look like: 
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System (1) shall be compiled for each «k» the seam (longitudinal 
section). 
Consequently, the number of equations is equal to 2n, where n is 

the number of sections (fig. 7). 
In the expression (1) is indicated: 
Ti=Ti(x) – the summary tangential efforts which relate with the 
linear tangential efforts τi(x) by the differential ratio: 

)()( xxT i

I

i =        (2) 

QSi=QSi(x) – the summary vertical efforts which relate with the 
linear tangential efforts Si(x) by the differential ratio: 

)()( xiSxI
iQS =        (3) 

ri – half the thickness of the i-th rod; 
b – width of the cross section of the rod (see fig. 2.); 

C=b/2 – rod turning radius (half the width of the section); 
GJi – torsional rigidity of i-th rod 
EF – rigidity of conditional rods of unit width, which simulate 
compression (stretching) the fiber of rods in the vertical direction 
[10]. 
The system of equations (1) can be conveniently solved by de-
composing the unknown members in the Fourier series by cosines: 
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(4) 

where         
l

n=  . 

To solve a system of equations, external torque Mt also is decom-
posite in series by cosines: 




=
=

1
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,       
(5) 

where Mt,n – the Fourier coefficient, which indicates the decompo-
sition of the external moment in the Fourier series. This Fourier 
coefficient is determined simply enough. The character of change 
of function of the external torque along the length of rod does not 

affect its definition. 
Then it is necessary differentiate, expanded, reduced to the 
Cos(α.x) all unknown and load terms in Fourier series. So, instead 
of differential equations get a system of linear algebraic equations. 
In the case of the same cross-section of all t rods (when the rod is 
divided into separate layers of equal thickness) will be: 
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where ri+1=ri=r; GJi=GJi+1=GJ. 
In the expression (6) through Ti and QSi  are designated unknown 
expansion coefficients in the Fourier series of cosine (4), and 
through Mt,i – the Fourier coefficients in the expansion of external 
torque Mt  moments in the series (5). 
The system of equations (6) is solved m times, where m is the 
upper limit of the summation of series (4) and (5). Usually 7–9 
odd term numbers are enough to provide acceptable calculation 

accuracy. 
After determining efforts Ti(x) and QSi(x) a rod is considered as 
loaded by external torque Mt,i(x) and the efforts Ti-1(x), Ti(x); QSi-

1(x), QSi(x), defined by solving the equations system  (fig. 8). 
If known the efforts Ti(x) and QSi(x), it is easy to determine the 
upper part of the block movements relative to its lower part (fig. 
1). 
After determining the unknown forces T (x) and S (x), determine 

the angle of rotation of the upper part of the block relative to its 
lower part. The rotation of the block to which the torque Mt is 
applied relative to the adjacent block is resisted not only by the 
compressed zone (not cracked section), but also by the reinforce-
ment. of the block in question along the X axis relative to the ad-

jacent block (Figure 0.18).Consider the displacement 

 
Fig.0.18: Scheme of deformation of reinforcement and mutual 

rotation of blocks 
In Fig. 2.18 the following designations have been adopted: 
 - 2acrc – the width of the crack; 
 - Xsh – the displacement of the cutting point of the reinforcing bar 
from the shift of the latter (in general, from shear and bending, but 
in view of the small value of acrc, the shear deformations predom-

inate in the main); 
 -Xob –  the displacement from the caving of concrete from the 
consideration of the work of reinforcement in concrete as a rod on 
an elastic foundation, the role of which is performed by a concrete 
shell. 
After that the unknown transverse (nagel) force Q is determined in 
the armature of element like [10] and [2]. 
It is determined from the condition that the horizontal C and CI 

point’s displacements (fig. 5) are equal in a place of mental cutting 
an armature. 
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where we have marked: 

edshedob aa ,, ; – the displacements from the concrete crimping 

and armature shear from the single force 1=Q  action; these dis-

placements are defined as the displacements of the rod, which is 
based on a continuous elastic base [10]; 

ver

Mta – the point С displacement  from the torsion of the upper 

part,  i.e. of the compressed zone (fig. 9) by external torque Mt  
considering  the internal forces QSi(x) and Ti(x); 

ver

edQa ,  – the point С displacement  from the torsion of the upper 

part,  (fig.9) by external torque, generated by a single force in the 

armature 1=Q ; 

nig

Mta  – the point C′ displacement,  i.e. the lower part in Fig. 9, 

from the action of internal forces QSi(x)  and Ti(x),  that arise as a 
result of  torsion by a external moment Mt; 

nig

edQa ,  – the point C′ displacement,  i.e. the lower part in Fig. 7, 

from the action of internal forces QSi(x)  and Ti(x), that arise as a 

result of  torsion by a single force 1=Q . 

 
Fig. 9: The scheme of the mutual rotation of two blocks, separated 

by crack 

The components of the displacement in the expression (7), are 
defined as in [2,10] but with the changes, wich connected with the 
definition of internal efforts, made in this article. 
After calculating the unknown quantity Q you can determine the 

real displacement in the crack wtot. 
Order to determine torsional rigidity of the element with normal 
crack should identify the rotation angle of conventionally continu-
ous (without cracks) element: 

2/h

totw
ekv = .       (8) 

The ratio of the rotation angle of continuous element without 

cracks to an equivalent, which defined by (8), gives us the ratio of 
the continuous element rigidity to the rigidity of the element with 
normal crack.  
Use of a multilayer scheme (fig. 3) advantageously differs from a 
two-layer scheme [10], because accuracy of determining the ef-
forts grows just as in FEM with decreasing the finite element size 
is increased the accuracy of the result. 
Thus, for a girder with cross section b x h = 10 x 20 cm, with 

block length between cracks L = 20 cm and with depth of the 
compressed zone 4 cm, the maximum effort value S (x)  in the end 
of the element (in the cross section with a crack) for the multilayer 
scheme (when the number of layers is equal to five) is constituted 
to 36,8 N/cm, and for the two-layer scheme – 28,3 N/cm. 
As you can see, the difference in values is a significant. Layers 
thickness (conditionally –dimensions of finite elements), which 
are needed to obtain an acceptable accuracy, can be determined by 
trial calculations. 

 

3. Conclusions  

 
 A method for determining the internal forces in rod element was 
developed. Torque is applied to a portion of the cross section. The 
calculation of these efforts allows to determine the displacements 
in the cross section with normal to crack under torque action. 
This, in turn, allows to determine the torsional rigidity of rein-
forced concrete element with normal cracks. 
The perspective is the development of methodology for determin-

ing the rigidity characteristics of concrete elements of an arbitrary 
cross-section with normal cracks.  



International Journal of Engineering & Technology 5 

 

 

In addition, it should develop a program on the computer for au-
tomatic calculation of displacements (and rigidity parameters) of 
elements with normal cracks. In the future, the program will be 
used as a subprogram in the calculation of bridges, slabs  and oth-
er ribbed systems taking into account the spatial work. 
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