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Annotation. The article shows that to determine the torsional stiffness of an element, one
should first dissect the reinforcement in the place of an inclined crack. After cutting the
reinforcement, the mutual displacement of the crack edges should be determined. This problem is
the main and most difficult one in the general problem of determining the torsional stiffness of
elements with both normal and inclined cracks. The article is devoted to solving just this most
difficult part of the problem — determining the mutual displacement of the sides of an inclined crack
of an I-beam element. According to the proposed technique, a real element with an oblique crack is
replaced by an element with different stiffness in sections. Within the inclined crack, the element
has a real slope equal to the slope of the inclined crack. In the area behind the tip of the inclined
crack, it is assumed that the height of the element section changes from a height equal to the height
of the zone above the crack to the full section height. Moreover, the change in height occurs
according to the law of a straight line. This line is inclined at some angle to the horizontal.

Key words: torsion, inclined crack, torsional stiffness, movement in a crack, I-beam, Saint-
Venant’s principle.

Introduction. Redistribution of efforts between individual elements of complex statically

indefinite systems depends on the ratio of their characteristics of rigidity [3, 5, 6, 8]. Flexural
stiffness of reinforced concrete elements, taking into account the formation of cracks, nonlinear
properties, have been studied quite widely. At the same time, much less attention has been paid to
the issues of changing the torsional stiffness of cracked reinforced concrete elements. As a result, in
the norms of Ukraine and many countries of the world, there are practically no methods for
determining the stiffness and deformability of reinforced concrete elements with cracks.
It has long been believed that longitudinal reinforcement does not affect the torsional strength of a
reinforced concrete element. A limited number of works have been devoted to the calculation of the
stiffness and torsional strength of reinforced concrete elements with normal cracks. These are some
works where elements of rectangular, box-shaped and hollow triangular sections were considered.
However, a large class of reinforced concrete elements have a cross-section in the form of an I-
beam, which leaves a significant imprint on their stress-strain state during torsion.

Research analysis and problem statement. In reinforced concrete elements, bending and
torsional stiffnesses are significantly affected by various cracks. A fairly large number of works [1,
12] are devoted to the issues of changing bending stiffnesses. Considerably fewer works are
devoted to the issues of determining the displacements during torsion of reinforced concrete
elements [9-11]. In these and other works, the presence of spatial spiral cracks is assumed.
However, such techniques are not suitable for calculating torsional displacements of elements with
normal and oblique cracks that are formed from bending moments. At the same time, there is a
large class of structures exposed to both bending and torsion moments, in the elements of which
only normal and oblique cracks are formed. These are ribs of ribbed prefabricated and monolithic
floors, crossbars, etc. [3]. The works [1, 2, 14] are devoted to the problem of determining the
torsional stiffness of reinforced concrete elements with normal cracks. In these works, it is shown
that such a problem should be divided into three stages: at the first stage, the longitudinal
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reinforcement is conventionally cut and the mutual displacement of the edges of a normal crack is
determined; at the second stage, the thrust forces in the longitudinal reinforcement are determined,
the third stage is the determination of the torsional stiffness of the element with known thrust
forces. The main and most difficult task is the first stage. This is since the use of the formulas of the
theory of elasticity to determine displacements in this case is not possible since the torque is
transmitted through a part of the section of the element. There are no works to determine the
torsional stiffness of reinforced concrete beams with inclined cracks.

In the connection with the above, this article aimsto develop a methodology for calculating
displacements during torsion of an I-beam element with an inclined crack.

The object of research is the work during torsion of reinforced concrete 1-beam elements
with inclined cracks.

Research methods — methods of structural mechanics (when developing a method for
determining the displacement of the sides of a normal crack); a computer
program Excel using Visual Basic for analyzing the stress-strain state of the elements under
consideration according to the developed method; numerical studies using the Lira program — to
compare data with the results of calculations according to the developed method.

Research results. As mentioned above, the main and most difficult in the general problem of
determining the stiffness of a reinforced concrete element with a normal or inclined crack is to
determine the mutual displacement of the crack edges with already conditionally dissected
longitudinal reinforcement. Consider an element of arbitrary section with an oblique crack, the right
end of which is sealed, and a torque is applied to the left end (Fig. 1). The main task in this case is
to determine the mutual displacement of points 4 and 5 in the crack under the action of the

torque M.
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Figure: 1. Diagram of an element with an inclined crack (a) and its representation in the form of a
stepwise change in stiffness (b)

The torque from block A to block B is transmitted through a part of the section of height Xcrc.
This is the main difficulty in determining the displacements in the element subject to torsion. The
methods of the theory of elasticity for determining displacements in a swirling element assume that
the torque is transmitted by tangential forces distributed over the entire end section [4]. In the case
of a normal or oblique crack (Fig. 1), this moment is transmitted by tangential forces distributed
only on a part of the end section of block B [1, 2].

The twist angle in the section 3-5 can be easily determined by the known methods of
resistance of materials [13] as an element with a variable section height. The definition of the twist



angle in section 1-3 in the case of an oblique crack does not differ at all from its determination in
the case of a normal crack. In connection with the above, following [2], where it was shown that in
the case of a normal crack, the element to the right of the crack can be calculated as a conditional
element with a section, the height of which changes along a certain curve, we imagine that in our
case the element height changes according to the law of a straight line lines from small value Xcrc to
full height h. This line in Fig. 1 is shown by dashed lines with an angle of inclination to the
horizontal a. Typical areas in Fig. 1 are designated by numbers 1 ... 5.

On a section I35 long, the element has a real slope of the lower face. On a section Il>-3 long, the
element has a conditional slope from the height Xcr to the height h.

The desired angle of rotation between points 4 and 5 will be determined from the model:

Py 5 =P 5 =P 4. 1)
In turn, the angle of rotation @14 will be equal to the sum of the angles of rotation:
O a=0 o+ 5= 04). (2)

Approximate equality in brackets of the model (2) is obvious from Fig. 1, a. It was also verified
by calculations in Lira program using volumetric finite elements. Indeed, points 3 and 4 are the points
of the unloaded end of the element, twisted by the tangential forces applied to the upper part of its
section with the height Xcrc.

On an inclined section 3-5, the angle of rotation will be determined using the known approach of
resistance of materials [13] as for an element with a variable section height. Let's call this angle ¢35 and
consider it known. The angle of rotation between points 1 and 2 ¢1-2 is also easily determined by the
well-known formula for the strength of materials [13]:

Pz = QL2 ®
tot

here Gutot — torsional stiffness of the full section (element with full height h).

Point 1 in Fig. 1 is randomly selected.

To determine the angle of rotation on a section with a length of .3, we assume that this
section can be replaced by an element of a conditionally constant section with a height hexv = (Xerc +
h)/2. Then the element diagram with an inclined crack according to Fig. 1, a will be replaced by a
scheme with a stepwise change in stiffness shown in Fig. 1, b. The angle of rotation in a section of
length 12-3 will also be determined from the known expression for the resistance of materials:

Pra= G020 @
ekv

here GJeww — equivalent stiffness of a member of a conditionally constant section height hekv.

The length I35 is, in fact, the projection of the inclined crack onto the longitudinal axis of the
element, which is determined by well-known techniques [7, 12].

The length I3 is easily determined from geometric constructions with the known value of Xcrc
and the angle of inclination a.

It should be noted that if the value of the equivalent height hey is such that hew,> h-hs (where
hs. is the thickness of the upper flange of the I-beam), then the moment of inertia Jewv in expression
(4) will already be determined as for an I-beam with a lower flange, the thickness of which is equal
to h-hew. If the height heky is such that hew<7-hsi, then the moment of inertia Jeky in expression (4)
will be determined as the moment of inertia of the T-element.

Calculations using the above method show that the angle « of the slope of the line of change
in the design height of the section to the horizontal should be taken equal to 45 degrees. Refinement
of this angle or acceptance of a line not in the form of a straight line, but the form of a certain curve,
is the subject of further research. Here we only note the fact that the length of the 123 section will be
within the Saint-Venant’s length. Indeed, according to the Saint-Venant’s principle, the uniform
distribution of tangential stresses (transmitted in Fig. 1 from left to right) will be at a distance from
the place of application of tangential forces (in our case, on a section of height Xcrc at point 3) equal
to the larger size of the cross section [2].




To check the calculation method, a rectangular beam with an inclined crack was modeled in
the Lira program. The beam section width is 100 mm, its height is 200 mm. Other dimensions are
shown in fig. 2, a. In addition, this beam was calculated as a bar with a variable cross-section (Fig,
2, b) according to the method proposed above. The deformation modulus in both cases is taken as
E= 25000 MPa.

The angle of rotation at the level of point a was compared with respect to the embedment
(point O in Fig. 2). This angle in the model from volumetric finite elements was calculated by the
formula:

X, + X
o= 0 (5)

Here xp, Xa — horizontal displacement, respectively, points a and b. The angle of rotation of the
rod scheme was determined by the well-known formula for the strength of materials. The difference
in the angles of rotation for the rod scheme and the scheme of volumetric finite elements was 2.4%,
which indicates a sufficiently high calculation accuracy according to the proposed engineering
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Figure: 2. Scheme for comparing the results:
a — element with an oblique crack, modeled in the Lyra software by volumetric finite
elements; b — the same element, represented by rods with a step change in the section height

It should be noted that the calculation according to the proposed method differs from the
calculation of an element with a normal crack only in that, in the case of an inclined crack, there is a
section on the left side with a real inclination of the section (see Fig. 1 and 2). The rest of the task is
identical. Using this technique, for the case of a normal crack, a comparison was made with
calculations in the Lira program using volumetric finite elements. Table 1 below shows the data for
such a comparison. An I-beam with a full section height h = 220 mm was considered. The width br
of the upper flange and its thickness hfl were varied; width and thickness of the bottom flange bs,
and hr; height hs and thickness t of the wall. In addition, the crack height hec and the distance
between the cracks lcrc were varied. Angle o in the design scheme according to Fig. 1 was taken
equal to 45 ° (the angle was taken for a line outgoing from the top of a normal crack). The table
shows the displacements from mutual rotation between the points of two adjacent normal cracks,



calculated using the proposed method and in the Lira program using volumetric finite elements.

Table 1- Comparison of displacements determined by the developed technique and by the Lira
program using volumetric finite elements

No bfy hfy bf, hf, t h3 Nere lere Ateor Alira Error
Tl ) ) ) ) ) | ()| (M) | (Mm) J %
1| 030 | 003 ]| 009 | 005 | 003 | 015 | 0.110 | 0.30 | 80.65 | 87.81 8.15
2 | 030 | 003 | 009 | 005 | 003 | 0.15 | 0.123 | 0.30 | 84.37 | 91.80 8.09
3 030|003 | 009 | 005 | 003 | 015 | 0.174 | 0.30 | 102.37 | 106.64 4.00
4 | 030 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.142 | 0.30 | 90.48 | 97.69 7.38
51030 | 003 | 009 | 0.05 | 0.03 | 0.15 | 0.045 | 0.30 | 65.72 | 70.00 6.11
6 | 030 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.058 | 0.30 | 68.22 | 74.73 8.72
7 | 020 | 003 | 0.09 | 0.05 | 0.03 | 0.15 | 0.110 | 0.30 | 105.88 | 111.22 4.80
8 | 020 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.123 | 0.30 | 112.09 | 117.69 4.76
9 | 020 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.174 | 0.30 | 143.00 | 143.56 0.39
10 | 0.20 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.142 | 0.30 | 122.42 | 127.58 4.04
11| 0.20 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.045 | 0.30 | 81.56 | 83.78 2.66
12 | 0.20 | 0.03 | 0.09 | 0.05 | 0.03 | 0.15 | 0.058 | 0.30 | 85.55 | 90.55 5.52
13| 0.30 | 0.04 | 0.09 | 0.05 | 0.03 | 0.14 | 0.110 | 0.30 | 43.92 | 49.02 10.41
14 | 0.30 | 0.04 | 0.09 | 0.05 | 0.03 | 0.14 | 0.123 | 0.30 | 45.08 | 50.28 10.35
15| 0.30 | 0.04 | 0.09 | 0.05 | 0.03 | 0.14 | 0.174 | 0.30 | 50.48 | 54.21 6.88
16 | 0.30 | 0.04 | 0.09 | 0.05 | 0.03 | 0.14 | 0.142 | 0.30 | 46.99 | 52.01 9.66
17 | 0.30 | 0.04 | 0.09 | 0.05 | 0.03 | 0.14 | 0.045 | 0.30 | 39.12 | 43.53 10.14
18 | 0.30 | 0.04 | 0.09 | 0.05 | 0.03 | 0.14 | 0.058 | 0.30 | 39.95 | 45.31 11.84

Average value % | 6.9
coefficient of variation % | 0.45

These table data indicate the sufficient accuracy of the proposed engineering method. It should
be noted that when performing calculations according to the proposed method, the torsional stiffness of
the T-shaped elements was determined as the sum of the stiffness of the rectangles that make up the T-
shaped. If the stiffness of the brands is determined by the exact method [4], then the coincidence of the
results with the data calculated by the Lira program will be even greater.

Conclusions and prospects of research. A method for determining the mutual displacement of
the banks of an inclined crack of an I-beam element is proposed. It is proposed to replace a real
element with an inclined crack with an element with a step change in height and consideration in
sections of equivalent rigidity. The line for changing the conditional height of the section from the top
of the inclined crack is inclined at an angle to the horizontal, which is taken equal to 45°. The
calculation technique allows determining the displacements in the crack without the use of
cumbersome calculations. At the same time, it has sufficient accuracy for engineering calculations.

In the future, it is assumed to vary the angles of inclination to the horizontal of the line of change
of the conditional height of the section, as well as the replacement of the straight line with a curve to
refine the calculation results.
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AHoTanis. J{ns BU3HAUYEHHS KOPCTKOCTI HA €IEMEHTI CIiJl CIIOYaTKy po3pi3aTH apMaTypy B
Micui moxunoi TpimuHu. [licas po3pidy apmaTypu Ciii BU3HAYUTH B3a€MHE 3MillIEHHS OeperiB
Tpimman. lle 3aBmaHHS € OCHOBHOIO 1 HaWCKJIATHIIIOW B 3arajlbHOMY 3aBJlaHHI BU3HAYCHHS
’KOPCTKOCTI Ha €JIEMEHTI SIK 3 HOPMaJIbHUMH, TaK 1 3 HOXWIMMH TPIIIMHAMHU.

CraTTs mpuUCBsiUE€HA BUPILMICHHIO 3aBIAaHHS — BU3HAYCHHS B3a€EMHOTO IEpeMillleHHs OeperiB
MOXWJIOI TPIIIMHU €JIEMEHTa JBOTABPOBOrO Mepepidy. 3rifHO 13 3alpONOHOBAHOK METOAMKOIO
peaIbHUN €JEMEHT 3 MOXWIOK TPIIIMHOIO 3aMIHEHHH €JIeMEHTOM 3 PI3HUMH TBEPJOCTAMH I10
AulsHKax. B Mexax moxusoi TPIIMHU €IeMEHT Ma€ peaibHUil Haxuil, pIBHUH HaXWily MOXMJIIOi
TpimmHUA. Ha AinsHII 32 BEpIIMHOI0 MOXWIIOI TPIIMHU NpPUKHHATA TINOTe3a, 10 BHCOTa Mepepidy
€JIEMEHTa 3MIHIOETHCS Bl BUCOTH, 1110 JIOPIBHIOE BUCOTI 30HHM HAJ| TPILIMHOIO, 10 MOBHOI BUCOTH
niepepizy. [Ipu oMy 3MiHa BUCOTH BiAOYBa€eThCs 3a 3aKOHOM MpsMoi JiiHii. Llst iHis HaxwieHa mija
JEeSIKUM KYTOM J10 TOPU30HTAI.

[TokazaHo, IO SIKIIO MPUHHATH KyT HAXWIy Li€i JiHIi piBHUM 45 rpanyciB, TO pe3yJbTaTH
BUXOJATH JOCUTh TOYHMMHU. EKBiBaJIeHTHa BHUCOTA Mepepizy BU3HAUEHA K CEpeHE 3HAYECHHS MIX
BHUCOTOI0 HaJ MOXWJIOK TPIIIMHOK 1 IMOBHOIO BHUCOTOIO Iepepidy. EKBiBaleHTHa KpyTHIJIbHA
KOPCTKICTh €JIeMEHTa Ha JUISHII MOXMJIOI JiHII NpUHMAeThCS PIBHOIO JKOPCTKOCTI €JIeMEHTa 3
YMOBHO MOCTIHHOIO KOPCTKICTIO IPY NOCTIHHIA BUCOTI, PIBHIN €KB1BaJICHTHIH.

[Toka3aHO TaKoX, IIO PO3PAaXyHOK 3a 3aIpPOINOHOBAHOIO METOJMKOIO BiAPI3HAETHCS BiJ
pPO3paxyHKy eJeMeHTa 3 HOPMAJIBHOK TPIIWHOIO TiIILKH TUM, IO B JIiBIM YacCTHUHI B pa3i MOXUIIOI
TPILIMHY € JITSTHKA 3 pealbHUM HaXWJIOM Irepepisy. [HIna yacTuHa 3aBaHHs iaeHTuuHa. HaBeneHo
MOPIBHSHHS PO3PAaXyHKIB 3a 3alPOTIOHOBAHOI0 METOJIMKOIO 3 TAHUMH PO3PaxyHKy B mporpami Jlipa
13 3acToCyBaHHSIM 00'€eMHUX KiHIIEBUX eNleMeHTIB. [IopiBHSHHS MOKazajao XOpomMi 30ir JaHUuX.
3anpornoHoBaHa METOJUKA PO3PAXYHKY J103BOJISIE BU3HAUUTHU MEPEMIIICHHS B OXWIIHN TpiluHi 6e3
BUKOPUCTAHHS MPOrPaMHHUX KOMILIEKCIB 13 3aCTOCYBaHHAM 00'€éMHUX KIHIEBHX €l1eMeHTiB. byayun
abCOJIIOTHO MTPOCTOI0, METO/IMKA MA€ JOCTATHIO JJISl IH)KEHEPHUX PO3PAXYHKIB TOUHICTD.

KirouoBi cioBa: kpydeHHs, MOXWia TpillMHA, KPYTHJIbHA JKOPCTKICTh, NEpEMIIllEHHS B
TPIIIMHI, ABOTaBpOBUil nepepi3, npuHiun CeH-Benana.
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Abstract. The article shows that to determine the torsional stiffness of the element, you must
first cut the reinforcement at the site of the inclined crack. After dissecting the reinforcement, the
mutual displacement of the crack edges should be determined. This problem is the main and most
difficult in the general problem of determining the torsional stiffness of elements with both normal
and inclined cracks.

The article is devoted to the solution of this most difficult part of the problem - the
determination of the mutual displacement of the banks of the inclined crack of the I1-beam element.
According to the proposed method, the real element with an inclined crack is replaced by an
element with different stiffness in sections. Within an inclined crack, the element has a real slope
equal to the slope of the inclined crack. In the area behind the apex of the inclined crack, it is
hypothesized that the cross-sectional height of the element varies from a height equal to the height
of the zone above the crack to the full cross-sectional height. And change of height occurs
according to the law of a straight line. This line is inclined at some angle to the horizontal. It is
shown that if we take the angle of inclination of this line equal to 45 degrees, the results are quite
accurate.

The equivalent section height is defined as the average value between the height above the
inclined crack and the total section height. The equivalent torsional stiffness of the element on the
section of the sloping line is taken equal to the stiffness of the element with a conditionally constant
stiffness at a constant height equal to the equivalent. It is also shown that the calculation according
to the proposed method differs from the calculation of an element with a normal crack only in that
in the left part in the case of an inclined crack there is a section with a real slope of the section. The
rest of the problem is identical. The comparison of calculations by the proposed method with the
calculation data in the Lear program using volumetric finite elements is given. The comparison
showed a good match of the data.

The proposed calculation method allows determining the displacements in an inclined crack
without the use of software packages using bulk finite elements. Being quite simple, the technique
has sufficient accuracy for engineering calculations.
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