Internaional Applied Mechanics, Vol 33, No, 5, 1997

CALCULATION OF THE PLASTIC ZONE AT A CRACK
TIP WITH THE USE OF THE "TRIDENT" MODEL

A. A. Kaminskii, L. A. Kipnis;, and V. A. Kolmakova UDC 539.375

For plane-sirain conditions, the initial plastic zone near the tip of a normal-rupiure crack in a uniform isorepic
elastoplastic body is usually modeled by two straight slip lines originating from the tip [7]. However, the results of independent
experiments [3, 4] have shown that a prefracture zone is present along with lateral plastic zones directly in front of the crack.
The prefracture zone is considerably shorter than the lateral zones, and the level of the siresses in it is extremely high. The
process of initial plastic deformation near the end of the crack is more accurately described by the “rrident™ model. In
aceordance with the laner, one more plastic band — a Dugdale line — emanates from the crack dp in addition of the above-
memiioned slip lines. The Dugdale line is appreciably shorer than the slip lines. Using Mellin's transform and the
Weiner — Hopf method, we derive formulas thar express the length of the plastic regions and the opening of the crack at its up
in terms of the stress-intensity factor.

1. For plane-strain conditions, we will examine the problem of the initial growth of plastic strains near the tip of a
normal rupmre crack in a uniform, isotropic, ideally elastoplastic body. Since the initial plastic zone is small compared to the
length of the crack and all of the other dimensions of the body and since we are studying the stress—strain state near the tip
of the crack, the body can be considéred an infinite elastoplastic plane containing a semi-infinite crack. The well-known
asymptote that is characteristic of normal rupture cracks is realized at infinity. The accompanying stress-intensity factor K
is assigned in accordance with the conditions of the problem.

Proceeding on the basis of experimental results that will be detailed below, we assume that the following mechanism
is responsible for the initial growth of plastic strains near the crack tip. Following the localization hypothesis, now widely used
in practice and confirmed by numerous experimenis [7], we assume thar plastic strain during the initial stage of growth is
concentrated in thin layers of the material — plastic bands. At first, two straight plastic bands grow from the crack tip with
an mcrease in the external load. These bands make the angle o with the continuation of the crack and represent slip lines, Only
the shear displacement can be discontinuous on the slip lines, and the shear stress is equal to the yield poimt in shear 7. The
angle e, determined from the condition of the slip-length maximum on the basis of the exact solution obtained in [13] for the
corresponding static problem, is equal to roughly 72°. Studies show that the point in the plane from which the crack and slip
lines originate is also a siress concentrator but is weaker than the crack tip. Thus, slip lines growing from the tip of a crack
do not eliminate the stress singularity in the tip, They only weaken it compared 1o the classical case, After a certain period of
increase in the external load, a third plastic band begins to grow from the end of the crack (as from a stress concentrator) along
with the straight slips line = which contimee their growth, The third band is lecated along the continuation of the crack and
represents a Dugdale line [14). Only the normal displacement can undergo discontinuity on a Dugdale line, and the normal
stress is equal o the yield point in tension o, The Dugdale line is considerably shorter than the slip lines. With the use of
Mellin"s imegral rransform and the solution constructed below for the Weiner — Hopf functional equation, it can be shown that
point O {Fig. 1), corresponding to the static boundary-value problem that will be examined below as the general problem and
being the point of origin of the crack, the slip lines, and the Dugdale line, is not a stress concentrator. Thus, it should not be
expected that new plastic bands will grow from the crack tip. As a result, the set of three straight plastic bands emanating from
point O {two slips lines, making a 72" angle with the continuation of the crack, and the appreciably shorter Dugdale line) model
the initial plastic zone at the tip of a normal repture crack (the “mident” model).

The lengths of the plastic bands are determined from the solution of the general problem by equating the stress-intensity
factors at the tips of the bands to zero.
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In order to find the stress-intensity factor at the end of a slip line, we need only 1o find the solution of the problem
near that end. Since the length d of the Dugdale line is considerably less than the length ! of the slip lines, then for values of
r commensurate with and d << r << [ (in particular, near the end of one of the slip lines) we can take as the solution of
the general problem the solution of the above-mentioned analogous problem without Dugdale lines. The latter is the external
problem relative to the general problem. Its solution is used to find the stress-intensity factor at the end of the slip lines and
the sought length. The length of the slip lines is determined by the following formula: I = 0.0583K%7,2,

Atr—=0, the principal terms of the expansion of each of the stresses ay(r, ), r4(r, &, o, (r, #) in the external problem
into a series have the form f,()r? and £,008) (j = 1. 2, 3 corresponds to oy, 7y, and o,, respectively), where X is the only
root of the following equation on the interval 1—1; 0f
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(with & equal to 72°, A = —0.20049). The sum of the remaining terms of each expansion approaches zero as r - 0. In
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(I'(z) is the gamma function; g(e) > 0; f(r) = 0). The sums {; D(@)r* + £,048) are the solution of problem A, analogous to
the external problem with semi-infinite slip lines and corresponding to the root A of characteristic equation (1.1).
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